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Abstract
The results of a detailed study of the magnetic properties of well-characterized
polycrystalline NipAl100−p (73.5 at.% � p � 76 at.%) alloys are presented
and discussed in the light of the existing theories. Extreme care has been
exercised in the sample preparation to ensure that the site disorder (invariably
present in any alloy system) does not interfere with the compositional disorder
brought about by the reduction in the concentration of the magnetic (Ni)
atoms. Thus, the observed variation in the magnetic properties with Ni
concentration ( p) is solely controlled by the compositional disorder. Like
site disorder, compositional disorder smears out the sharp features in the
density of states (DOS) curve near the Fermi level, EF, and reduces the
DOS at EF, N(EF), and thereby causes a fall (an enhancement) in the values
(value) of the spontaneous magnetization at 0 K, M0, the spin-wave stiffness at
0 K, D0, and the Curie temperature, TC (zero-field differential susceptibility
at 0 K, χ0). However, compositional disorder, unlike site disorder, gives
rise to smooth variations in N(EF), the inverse Stoner enhancement factor
S−1 = I N(EF) − 1, M0, D0, TC, D0/TC and χ0 with p. These variations
in the case of M0(p), D0(p) and TC(p) are very well described by the power
laws M0(p) ∼ (p − pc)

βp , D0(p) ∼ (p − pc)
θp and TC(p) ∼ (p − pc)

φ

with p > pc (pc = the percolation threshold for the appearance of long-range
ferromagnetic order) predicted by the percolation theories for these quantities on
a regular three-dimensional (d = 3) percolating network. The alloys in question
exhibit a crossover in the spin dynamics from the hydrodynamic (magnon) to
critical (fracton) regime at a well-defined temperature T ∗

co(p). An elaborate
analysis of the magnetization data in terms of the percolation models permits
a reasonably accurate determination of the magnon-to-fracton crossover line
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in the magnetic phase diagram, the percolation-to-thermal crossover exponent,
fractal dimension, fracton dimensionality, the percolation critical exponents
for spontaneous magnetization, spin-wave stiffness, correlation length and
conductivity. The results of this analysis also vindicate the Alexander–Orbach
conjecture and the Golden inequality for d = 3 percolating ferromagnetic
networks.

1. Introduction

According to the phase diagram [1] of binary NipAl100−p alloys, the intermetallic compound
Ni75Al25 has a homogeneity range which extends from pl = 73.5 at.% to pu = 76.5 at.%.
The investigations [2–9] of magnetic properties in the composition range pl � p � pu have
revealed that these properties are extremely sensitive to Ni concentration ( p)—so much so that
the long-range weak itinerant-electron ferromagnetism breaks down completely (i.e., the Curie
temperature, TC, drops to zero) if p falls below pc ≈ 74.5 at.% [2–7] and paves the way to
exchange-enhanced paramagnetism for p just below pc. By contrast, one such investigation
due to Dhar et al [8] places this critical Ni concentration (pc) at 75.1 ± 0.2 at.%. Even among
those determinations [2–7] that are in good agreement as far as the value of pc is concerned,
widely different values of TC for a given composition are observed. For instance, TC varies from
25 K [4] to 43 K [7] for the stoichiometric composition. Dhar et al [8] observe that if the Ni
concentrations of their samples are systematically shifted to lower values by ∼0.6 at.%, their
TC values match the previously determined [2–7] ones. On the basis of this observation and the
argument that, to some extent, Al is lost by evaporation during high-temperature annealing,
these authors suggest that the nominal compositions reported [2–7] earlier are lower in Ni
concentration by ∼0.6 at.%. Subsequently, a detailed study [9] of magnetic and transport
properties of chemically analysed NipAl100−p alloys yielded values of TC that conform well
with those reported in [6, 7], based on nominal compositions. At this stage, it should be noted
that in view of the inferences drawn in the preceding paper [10] (henceforth referred to as
paper I) regarding the role of site disorder, the wide dispersion in the TC values for a given
composition could partly result from the fact that the samples of nearly the same composition,
used in different investigations, have been subjected to different heat treatments and hence are
in different states of site disorder.

Magnetic properties of binary NipAl100−p alloys in the composition range pl � p � pu

but for p � pc have been interpreted in terms of either the Stoner–Wohlfarth (SWO)
model [11, 12] or the self-consistent renormalization (SCR) theory of non-propagating spin
fluctuations [13], as elucidated below. On the one hand, the result that the expressions
M(T, 0) = M(0, 0)−aT 2 and TC(p) ∼ (p − pc)

1/2, predicted by the SWO model, reproduce
quite well respectively the observed temperature dependence of spontaneous magnetization,
M(T, 0), for 0.1TC � T � 0.75TC and the Ni concentration dependence of TC for p � pc has
been taken to imply [2, 3, 5] that the SWO model, which holds the Stoner single-particle spin-
flip excitations solely responsible for the thermal demagnetization of M(T, 0), adequately
describes magnetism in the NipAl100−p alloys for pc � p � pu. On the other hand,
on the basis of the observations that, in the temperature ranges 0.1TC � T � 0.4TC and
0.42TC � T � TC, respectively, M(T, 0) follows the relations M2(T, 0) = M2(0, 0) − bT 2

and M2(T, 0) = c(T 4/3
C − T 4/3), predicted by the SCR spin fluctuation (SF) model, and

that the variations of TC and M(0, 0) with Ni concentration, TC(p) ∼ (p − pc)
1/2 and

M(0, 0) ∼ (p − pc)
1/2, are also consistent with the predictions of this model, Sasakura et al

[6] and Suzuki and Masuda [7] assert that the SCR-SF model, but not the SWO model, forms a
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Table 1. Actual Ni and Al concentrations, lattice parameter, a, atomic long-range order parameter,
S, magnetic moment per Ni atom at 5 K, µNi, coefficient of the

√
H term, η′, and high-field

susceptibility at 0 K, χhf(0).

Ni Al
conc. conc. a µNi η′ χhf (0)

Sample (at.%) (at.%) (Å) S (µB) (×10−2 Oe1/2) (×10−5)

S74 74.31(9) 25.69(5) 3.5708(12) 0.76(4) 0.035(1) 5.3(3) 11.6(1)
S75 74.73(9) 25.27(5) 3.5686(14) 0.77(4) 0.060(1) 4.2(4) 11.1(3)
S76 75.98(8) 24.02(5) 3.5618(10) 0.76(2) 0.134(1) 2.5(3) 9.7(3)

correct description of magnetism in the alloys in question. The above observations concerning
the temperature dependence of M(T, 0) are, however, in direct contradiction with the direct
(indirect) evidence for well-defined spin-wave excitations in Ni75Al25 at low temperatures from
small-angle neutron scattering [14] and inelastic neutron scattering [15] experiments (recent
high-precision magnetization data [10, 16]).

From the foregoing critical assessment of the results reported so far, it is evident that a
complete understanding of magnetism in the NipAl100−p alloys for pc � p � pu is still lacking.
Taking cognizance of the fact that the previous investigations [2–9] were plagued by the
complex interplay between site disorder and compositional disorder and that they completely
ignored the contribution due to spin-wave excitations, which are primarily responsible for
the thermal demagnetization of M(T, 0) and M(T, H ) at low temperatures [10, 16], we
undertook a detailed magnetization study of NipAl100−p alloys in the Ni concentration range
74 at.% � p � 76 at.%. The samples of different composition, used for magnetic
measurements, were prepared under identical conditions without subjecting them to any
annealing treatment. This strategy was deliberately adopted so as to ensure that all the samples
had essentially the same background site disorder. The compositional dependence of the
magnetic properties is thus solely controlled by the additional site disorder brought about by
the variation in composition, i.e., by the compositional disorder alone.

2. Experimental details

Starting from 99.998% pure Ni and Al, polycrystalline rods, 100 mm in length and 10 mm in
diameter, of the alloys with nominal composition Ni74Al26, Ni74.5Al25.5, Ni75Al25 and Ni76Al24

were prepared by a radio-frequency (RF) induction technique following a procedure detailed
elsewhere [17]. In an attempt to partly compensate for the loss of Al by evaporation during
melting, a small amount of Al in excess of that suggested by the nominal composition was
deliberately added to the alloy constituents before melting. Spheres of 2.5 mm diameter and
discs of 10 mm diameter and 5 mm thickness were spark-cut from the alloy rods. A number of
pieces cut from the different parts of the rod of given composition were analysed for chemical
composition using the x-ray fluorescence technique and inductively coupled plasma optical
emission spectroscopy. The actual chemical composition of the alloys is given in table 1.
Consistent with the purity of the starting materials, the total concentration of magnetic 3d
transition metal impurities such as Mn, Cr, Fe and Co was below 0.002 at.%. X-ray diffraction
patterns were recorded for disc-shaped samples at room temperature over the angle, 2θ , range
of 10◦ � 2θ � 100◦, using Cu Kα radiation. The observed x-ray patterns, shown in figure 1,
could be completely indexed on the basis of the L12 cubic structure. Drastically reduced
peak intensity and very broad Bragg peaks for the samples S74 and S75 (for sample labels,
see the following text) compared to that for the sample S76 are manifestations of a fairly large
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Figure 1. X-ray diffraction patterns at room temperature.

internal strain and/or compositional inhomogeneity in the former two samples. The refined
values of the lattice parameter, a, and the numerical estimates for the atomic long-range order
parameter, S, yielded by the elaborate analyses [17] of the x-ray diffraction data, are displayed
in table 1. That, regardless of the Ni concentration, the alloys in question are roughly in the
same site-disordered state is supported by the result that the long-range order parameter hardly
varies with the Ni concentration (table 1). In view of the calculation of the site occupation of
Ni and Al sublattices from the observed values of S, described in detail in section 3 of paper I,
very low concentrations of impurities and vacancies (point defects) in the samples in question
are not expected to have any significant influence on the site occupation and hence on the
type of site disorder present; the site disorder in these samples mainly results from the antisite
concentration of Ni and Al atoms.
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Table 2. The Curie temperature, TC, spin-wave stiffness at 0 K, D0, the D0/TC ratio, magnon-
to-fracton crossover temperature, T ∗

co, and crossover frequency, ωco.

TC D0 D0/TC T ∗
co ωco

Sample (K) (meV Å2) (meV Å2 K−1) (K) (1011 Hz)

S74 47.60(5) 16(2) 0.34(4) 0.30(15) 0.4(2)
S75 56.24(5) 32(2) 0.57(4) 4.90(75) 6.4(10)
S76 76.30(5) 96.7(3) 1.267(5) 48.20(75) 63.0(10)

The magnetization (M) of polycrystalline NipAl100−p (p = 73.52, 74.31, 74.73 and
75.98) alloys with composition near the critical Ni concentration (pc = 74.5) was measured
as a function of the external magnetic field (Hext) at a temperature T = 5 K in fields up
to 70 kOe and as a function of temperature at Hext = 1 kOe in the temperature range
5 K � T ∼ 2TC (TC = Curie temperature) with a relative accuracy of better than 10 ppm using
a SQUID magnetometer. These measurements revealed that all the alloys, with the exception
of the alloy with p = 73.52 (which is paramagnetic at temperatures down to 5 K), exhibit
long-range ferromagnetic order at temperatures below TC. The Curie temperature TC for a
given composition was determined from the Arrott (M2(T, H ) versus H/M(T, H ), where
H = Hext − 4π N M(T, Hext) and N is the demagnetizing factor [10]) plot, as detailed in
paper I. These Arrott plots were constructed out of the M(T, Hext) isotherms taken at different
temperatures in fields up to 15 kOe using a vibrating sample magnetometer (VSM). The values
of TC so determined are displayed in table 2. Now as the main aim of this paper is to ascertain the
effect of compositional disorder on the magnetic quantities of interest such as the spontaneous
magnetization at 0 K, M0 ≡ M(0, 0), the spin-wave stiffness at 0 K, D0, zero-field differential
susceptibility at 0 K, χ0 ≡ χ(0, 0), density of states at the Fermi level, N(EF), and TC, only
the magnetization data for the alloys with p = 74.31, 74.73 and 75.98 (henceforth referred to
as the samples S74, S75 and S76) are presented here. Note that Al atoms in NipAl100−p alloys
do not possess any magnetic moment and hence act to produce magnetic dilution.

3. Data analysis, results and discussion

A complete loss of long-range ferromagnetic order at a critical value of the Ni concentration
(the percolation threshold) suggests that the percolation ideas may have some relevance to
the magnetism in the NipAl100−p alloys, even though these alloys are supposed to be weak
itinerant-electron ferromagnets. Before ascertaining whether or not the effect of compositional
disorder can be understood in terms of the percolation theories, an attempt has been made to
analyse the magnetization data taken for the samples S74, S75 and S76 in the same way as was
done for the Ni75Al25 samples with varying degree of site disorder in paper I.

The spontaneous magnetization at 0 K for each concentration was obtained by fitting
the M(T = 5 K, H ) isotherms for fields above the technical saturation to the expression
M(H ) = M0 + η′√H + χhf H (equation (1) of paper I), where M0 is the spontaneous
magnetization at 5 K. The best least-squares fits (continuous curves) to the M(T = 5 K, H )

data (symbols), based on the above expression, are shown in figure 2 while the corresponding
values of the parameters µNi (magnetic moment per Ni atom, deduced from M0), η′ and the
high-field susceptibility, χhf , are listed in table 1. The reduction in the parameter η′ (which
is a direct measure of the suppression of spin waves by the magnetic field) as p increases
(table 1) can be qualitatively understood as follows. Since µNi increases with p (table 1),
the corresponding increase in the internal field results in the progressive suppression of spin
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represent the best least-squares fits based on the expression given in the text.

waves—so much so that these low-lying magnetic excitations become less and less sensitive
to the external magnetic field as p increases. Moreover, as both µNi and χhf are related to the
density of states (DOS) per atom per spin at the Fermi level, N(EF), through the equations (9)
and (8) of paper I, the decline in η′ and χhf as p increases (table 1) basically reflects a sizable
enhancement in N(EF) with increasing Ni concentration.

M0 and χ0 (zero-field differential susceptibility at 0 K) have also been determined [10] from
the Arrott ([M(T, H )]2 versus H/M(T, H )) plots, constructed out of the M(T = 5 K, H ) data
of figure 2 and displayed in figure 3. A close scrutiny of the data presented in figure 3 reveals a
slight concave-downward (concave-upward) curvature in the Arrott plot isotherm (isotherms)
for the sample (samples) S76 (S74 and S75); the concave upward curvature becomes more
pronounced as the Ni concentration decreases from 74.73 at.% in S75 to 74.31 at.% in S74.
Nevertheless, at high fields, the Arrott plot isotherms for all the three samples are roughly
linear and a linear extrapolation in this field regime (which is much narrower than that for the
samples used in paper I) was made to obtain reliable values for M0 and χ0. As observed in
paper I, the M0 values obtained by the above two methods are in excellent agreement with
one another. χ0 and the lattice parameter a are plotted against Ni concentration p in figure 4.
The linear decrease in a with increasing p conforms very well with the variation of a with p
reported [18] earlier in ordered NipAl100−p alloys. The finding that the functional form of a(p)

is the same for site-disordered and ordered NipAl100−p alloys re-emphasizes the conclusion
drawn in paper I that the site disorder has practically no effect on the lattice parameter. This
result also asserts that the observed variation of a with p is solely governed by the compositional
disorder.

In sharp contrast with the magnetic behaviour observed [10] in site-disordered Ni75Al25

samples, the thermal demagnetization of M(T, 0) and M(T, H ) for T � TC in the samples
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under consideration does not follow the predictions (equations (3)–(6) of paper I) of any of
the theoretical models [11–13, 19, 20] proposed for weak itinerant-electron ferromagnets. To
elucidate this point further, attempts to fit equations (3)–(6) of paper I to the M(T, 0) and
M(T, H ) data over any reasonable temperature range for T � TC did not succeed. Next, the
numerical estimates for the density of states (DOS) per atom per spin at the Fermi level, N(EF),
were obtained by inserting the values of χ0 determined here and the previously reported [21]
value I = 0.85 eV of the Stoner parameter into the relation N(EF) = χ0/[Iχ0 − Nµ2

B] (which
is an alternative form of equations (8) and (10) of paper I). The N(EF) values, so obtained, and
the above value of the Stoner parameter I , when used in the expression S−1 = [I N(EF) − 1],
yield the values for the inverse Stoner enhancement parameter S−1 for different compositions.
The variations of N(EF) and S−1 with Ni concentration p are shown in figure 5. Considering
that the long-range ferromagnetic order is sustained only when I N(EF) > 1 (the Stoner
criterion), a theoretical fit to the S−1(p) data has been attempted on the basis of the empirical
relationS−1(p) = A(p− pc)

n so as to determine the critical Ni concentration (pc) for the onset
of long-range ferromagnetic order, at which S−1(pc) = 0. The continuous curve through the
S−1(p) data, shown in figure 5, depicts the best (least-squares) fit based on the above relation
with the parameter values A = 0.0048(7), pc = 73.6(1) at.% Ni and n = 1.30(1). Note that
in arriving at the best fit, pc is kept fixed at a certain value in the range 73 � pc � 75 (in
steps of 0.01) while the other two parameters A and n are varied. In order to ascertain whether
or not the reduction in N(EF) with decreasing (increasing) Ni concentration (compositional
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disorder) is associated with the change in the shape of the DOS curve near the Fermi level,
EF, caused by compositional disorder, we proceed along the same lines as in paper I and
plot M0 against [N(EF)]2 (S−1)1/2 (equation (14) of paper I) in figure 6 and TC versus M3/2

0
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(equation (17) of paper I) in figure 7. The nonlinear variations observed in figures 6 and 7
imply that the compositional disorder does change the shape of the DOS curve near EF, in
addition to reducing N(EF).

In the event that spin waves are the main cause for the thermal demagnetization at
low temperatures (as was the case for the Ni75Al25 samples in paper I), a plot of the ‘in-
field’ magnetization versus T 3/2 should exhibit a concave-downward curvature due to: (i)
the presence of higher-order terms in the magnon dispersion relation; (ii) the temperature
renormalization of the spin-wave stiffness; and (iii) the gap in the spin-wave spectrum
introduced by magnetic field H and other anisotropy fields. In sharp contrast to this, a
noticeable concave-upward curvature is observed in the M versus T 3/2 curves (figure 8),
irrespective of the alloy composition. As the concentration of the magnetic (Ni) atoms
approaches the critical value pc from the higher side, this curvature becomes more and
more prominent. This deviation from the expected behaviour is a strong indication for a
crossover in the spin dynamics on a three-dimensional ferromagnetic percolating network
from a hydrodynamic (magnon) regime at low temperatures to a critical (fracton) regime at
high temperatures. Before ascertaining whether or not this is the case from an elaborate analysis
of the M(T, H ) data, an attempt was made to find out whether the percolation theories [22–24]
correctly describe the observed variations of M0 and TC with p.

For randomly diluted magnetic systems, the percolation theories [22–24] predict that the
spontaneous magnetization (or the percolation probability) at 0 K, M0, and Curie temperature,
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TC, go smoothly to zero, in accordance with the following relations, as the concentration, p,
of magnetic (Ni in the present case) atoms approaches the percolation threshold pc:

M(T = 0, p) = M0(p) = mp(p − pc)
βp [1 + a(p − pc)

	], p > pc, (1)

TC(p) = tp(p − pc)
φ, p > pc. (2)

In equations (1) and (2), mp and tp are the percolation critical amplitudes for M0 and TC,
respectively, βp is the percolation critical exponent for spontaneous magnetization, φ is the
thermal-to-percolation crossover exponent and a (	) is the ‘correction-to-scaling’ amplitude
(exponent). Equations (1) and (2) are least-squares fitted to the M0(p) and TC(p) data by
treating mp, βp and a (tp and pc) as free fitting parameters and keeping 	 and pc(φ) fixed
at 	 = 1 [22–24] and in steps of 0.01 within the range 73 � pc � 75, respectively (in
steps of 0.01 in the range 0.3 � φ � 0.8). The least-squares fits to the M0(p) and TC(p)

data are depicted in figure 9 as continuous curves and the corresponding parameter values are
mp = 11.38(1), pc = 73.55(5), βp = 0.41(1), a = 1.648(56), tp = 46.20(8), pc = 73.56(4)

and φ = 0.50(5).
Aharony et al [25, 26] have proposed the following generalized form for the density of

vibrational states of a percolating network for p > pC:

N(ω) = Aωx−1 f (ω/ωco) (3)

where x represents the fracton dimensionality for which the explicit expression depends on the
type of fractal model chosen, ωco is the frequency at which the crossover from the hydrodynamic
(phonon or magnon) regime to the critical (fracton) regime takes place and A is a constant
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independent of ωco. f (z) in the above expression is a scaling function which has the asymptotic
limits f (z) → 1 as z → ∞ and f (z) → zd ′−x as z → 0, so the density of vibrational states
in the hydrodynamic limit (ω 
 ωco) is

Nhy(ω) = Aωx−d ′
co ωd ′−1 (4)

and in the critical limit (ω � ωco)

Ncr(ω) = Aωx−1. (5)

For a phonon–fracton (magnon–fracton) crossover, the fracton dimensionality, x , and the
dimension, d ′, are [27] x = d̃ (d̃f/2) and d ′ = d (d/2). Within the framework of this theoretical
formalism, Kaul and Srinath [28] proposed the following expression for the effective density
of states (DOS) in d = 3 percolating ferromagnetic networks:

neff(ω) = (1/4π2)[h̄/D(p)]d/2(p − pc)
νp(Df−d)ω(d/2)−1

(
1 +

ω

ωco

)(d̃f−d)/2

(6)

where D(p) is the concentration-dependent spin-wave (sw) stiffness, Df is the fractal
dimension and d̃f is the ferromagnetic fracton (fr) dimensionality. Consistent with the
asymptotic forms, equations (4)–(6) yield

nsw(ω) = A′′ω(d̃f −d)/2
co ω(d/2)−1 (7)

and

nfr(ω) = A′′ω(d̃f/2)−1, (8)
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with A′′ = (1/4π2){h̄ω
[1−(d̃f −d)]
p /dp}d/2, in the magnon (ω 
 ωco) and fracton (ω � ωco)

regimes, respectively. Moreover, the above expression (equation (6)) for the effective DOS
leads to a smooth crossover from the hydrodynamic to the critical regime at ω = ωco and gives
the expected result [25–27] that the ratio nfr(ωco)/nsw(ωco) is a constant independent of ωco.
In arriving at equations (7) and (8), use has been made of the expressions [25–27]

D0(p) = dp(p − pc)
θp (9)

with θp = 2νp[(Df/d̃f) − 1] and

ωco = ωp(p − pc)
2νp Df /d̃f . (10)

Using the relation [27, 29]

Df = d − (βp/νp) (11)

and equation (1), equation (6) can be recast into the form

neff(ω) = (1/4π2)[h̄/D(p)]d/2[m∗
p/M0(p)]ω(d/2)−1

(
1 +

ω

ωco

)(d̃f−d)/2

(12)

where m∗
p = mp[1 + a(p − pc)

	].
The magnetization M(T, H ) is calculated by numerically integrating over the density of

states, neff(ω), equation (12), using the Bose–Einstein function, which accounts for the gap
introduced in the spin-wave spectrum by the effective field Heff = H − Hd + HA, where
Hd = 4π N M is the demagnetizing field and HA is the anisotropy field (in the case where
anisotropy is present), i.e.,

M(T, H ) = M(0, H ) − gµB

∫ ω

0

neff(ω) dω

e(h̄ω+gµB Heff)/kB T − 1
. (13)

It turns out that M(T, H ) is independent of the upper limit ω for ω > 1013 Hz. The upper limit
is thus fixed at 1014 Hz. For a given composition and field value, the agreement between the
observed and calculated values of M at different temperatures T � TC is optimized by varying
M(0, H ), D and ωco, while keeping d̃f fixed, in steps of 0.01 in the range 1.2 � d̃f � 1.4 in
the expression for neff(ω), equation (12). It is observed that the quality of fit is improved to
a great extent when the temperature dependence of the spin-wave stiffness is included in the
expression for neff (ω). Among the relations

D(T ) = D0(1 − D5/2T 5/2) (14)

and

D(T ) = D0(1 − D2T 2), (15)

predicted respectively by the Heisenberg (localized-spin) and itinerant-electron models, for the
temperature renormalization of the spin-wave stiffness D, the one for the itinerant case, i.e.,
equation (15), reproduces the M(T, H ) data better than that given by the Heisenberg model,
as is evident from a representative plot of the deviations of the fits, based on equations (14)
and (15), from the data, against temperature shown in figure 10. From the optimum fits based
on equations (13) and (15), e.g., the continuous curves through the M(T, H = 1 kOe) data
(symbols) shown in figure 11, the values of D0(p) = D(T = 0, p) and ωco at a given field
value for different compositions are obtained. It is observed that, irrespective of the field
H , the power laws [22–24, 27], equations (9) and (10), are valid and describe (continuous
curves in figure 12) the D0(p) and ωco(p) data extremely well with the parameter values
pc = 73.55(6), θp = 2νp[(Df/d̃f) − 1] = 1.53(5) and pc = 73.53(4), θp + 2νp = 3.25(3) (in
ωco(p) = ωp(p − pc)

θp+2νp , which is an alternative form of equation (10)).
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theoretical fits based on equations (13) and (15)
of the text.

With a view to emphasizing the fact that the values of exponents φ, θp, βp along with the
amplitudes tp, dp and mp determined by the methods described in the preceding text are the true
asymptotic values and to highlight the importance of the ‘correction-to-scaling’ term in the case
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of M(T, 0), the quantities [TC(p)/tp]1/φ , [D(T = 0, p)/dp]1/θp and [M(T = 0, p)/mp]1/βp

are plotted against (p − pc) in figure 13. The solid straight lines and the continuous curve
represent the best least-squares fits. The important observations are the following. (i) The
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(the curve, TC(p), at which the paramagnetic (PM) and ferromagnetic (FM-1) phases coexist) and
the fracton-to-magnon (FM-1-to-FM-2), T ∗

CO(p), crossover lines.

TC(p), D(T = 0, p) and M(T = 0, p) data lead to the same value for pc within the uncertainty
limits for the alloy series in question. (ii) ‘Correction-to-scaling’ terms need to be considered
in order to arrive at the true asymptotic values of βp and mp from the M(T = 0, p) data.
The values of the exponents θp + 2νp and θp for ωco(p) and D0(p) are used to arrive at the
value for the correlation length percolation exponent νp = 0.85(4) whereas the relation [22–
24] θp = σp − βp, where σp is the conductivity percolation critical exponent, defined as
� ∼ (p − pc)

σ p, and equation (11) yield σp = 1.94(6) and Df = 2.51(3). From the values of
ωco(p) for different concentrations, the temperature at which crossover from the hydrodynamic
(magnon) regime to the critical (fracton) regime occurs [29], T ∗

co(p) = h̄ωco(p)/kB, has
been evaluated. The T ∗

co(p) curve represents the crossover line that divides the ordered
(ferromagnetic, FM) phase into two (FM-2, hydrodynamic and FM-1, critical) regions in the
magnetic phase diagram (figure 14) in the lower-temperature regime. This line is in addition
to the thermal-to-percolation crossover line, TC(p), that establishes the boundary between the
ordered (FM) and disordered (paramagnetic, PM) magnetic phases in figure 14.

The values of percolation exponents θp, βp, νp, σp, their ratios βp/νp, σp/νp, the thermal-
to-percolation crossover exponent φ, the fractal dimension Df and the ferromagnetic fracton
dimensionality d̃f yielded by the above-mentioned data analysis are tabulated and compared
with the corresponding theoretical estimates [22–24, 27] for percolation on a regular d = 3
lattice in table 3. A very good agreement between the experimentally determined and
theoretically predicted values (except for the crossover exponent φ), as evidenced from
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Table 3. Comparison between experiment and theory.

Parameter Experiment Theory [22–24, 27]

φ 0.50(5) 1.10(2)
θp 1.53(5) 1.52(3)
βp 0.41(1) 0.41(1)
νp 0.85(4) 0.87(7)
σp 1.94(6) 2.00(5)
βp/νp 0.48(3) 0.471(16)
σp/νp 2.28(6) 2.31(6)
Df 2.51(3) 2.50(2)

d̃f 1.32(3) 4/3

the entries in table 3, strongly indicates that the percolation picture is applicable to the
alloys in question. Similar agreement between experiment and theory has been previously
observed [28, 30] in several quenched random site-diluted ferromagnetic systems (dilute
magnetic amorphous alloys). An obvious deduction from this agreement is that quenched
randomness does not alter the critical behaviour of percolation on a regular d = 3 lattice.
While the result d̃f = 1.32(3) vindicates the Alexander–Orbach conjecture [31] (which states
that the fracton dimensionality d̃f = 4/3 for percolating networks with Euclidean dimension
d � 2) for d = 3, the finding that σp = 1.94(6) is consistent with the Golden inequality [32]
σp � 2 for d = 3.

The results yielded by the analysis based on percolation ideas raise the following pertinent
questions.

(1) How reliable are the exponent values with just three data points corresponding to the three
compositions studied?

(2) How can one justify using a percolation (localized-spin) approach to describe weak
itinerant-electron ferromagnets?

Despite scanty data, a high level of confidence in the exponent values quoted in table 3 is
justified on two counts. First, considering that an accurate estimate of the percolation threshold
pc is absolutely crucial to the determination of the percolation exponents, the different data sets
TC(p), M0(p), D0(p), ωco(p) and S−1(p) yield the same value for pc within the uncertainty
limits. Second, in the alloy with composition (Ni73.52Al26.48) very close to pc = 73.55 at.% Ni,
no long-range ferromagnetic order has been observed for temperatures down to 5 K. However,
a large number of data points are certainly needed to refine the value of pc and hence to
determine the exponents with much greater accuracy. The fractal nature of the magnetic
network in the site-disordered NipAl100−p alloys with p near pc could be the result of the high
degree of quenched random disorder and/or chemical inhomogeneity (as inferred from the x-ray
diffraction patterns shown in figure 1). Thus, even though the samples in question exhibit weak
itinerant-electron ferromagnetism, the percolation behaviour can be attributed to the random-
disorder-induced localization of magnetic moments. For dilute ferromagnets with composition
(p) in close proximity to the percolation threshold (pc), finite magnetic clusters with a broad
size distribution coexist [33] with an infinite ferromagnetic network. As the concentration of
magnetic atoms, p, is increased above the percolation threshold, pc, the infinite ferromagnetic
network grows at the expense of finite ferromagnetic clusters whose number reduces [33]
rapidly and the size distribution narrows down [34]. Indirect experimental evidence for
the existence of such finite ferromagnetic clusters at temperatures above TC comes from the
concave-downward curvature in the M versus H isotherms and the deviations from the Curie–
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Weiss law behaviour of magnetic susceptibility that persist to temperatures as high as ∼2TC

(∼6TC) for the ‘as-prepared’ and ‘annealed’ samples (‘quenched sample’) of Ni75Al25 [10, 17].
At this stage, it is worth noting that the magnetic parameters for the ‘quenched’ sample

S2 of paper I do not follow the variations with Ni concentration observed for the samples S74,
S75 and S76 (figures 4, 5, 9 and 12) even though the long-range order parameter S has the same
value for S2, S74, S75 and S76 within the uncertainty limits. This is so because the sample S2,
unlike the samples S74, S75 and S76, has a very high concentration of vacancies (point defects)
which, in turn, accounts for a significant part of site disorder in this sample (for details, refer
to section 3 of paper I).

Finally, D0 is plotted against M0 in figure 7 with a view to ascertaining whether the
compositional disorder affects the band parameter c⊥ in the relation D0 = gµBc⊥M0, predicted
by the spin fluctuation models [19, 20]. Consistent with the previous inferences, a nonlinear
variation of D0 with M0 implies that the compositional disorder does affect the shape of the
DOS curve near EF.

4. Conclusion

The results of the present investigation reveal that the compositional disorder has a profound
effect on the magnetic properties of site-disordered NipAl100−p alloys, as elucidated below.

Like site disorder, compositional disorder smears out the sharp features in the density of
states (DOS) curve near the Fermi level, EF, and reduces the DOS at EF, N(EF), with the result
that a sizable reduction (increase) occurs in the spontaneous magnetization at 0 K, M0, the spin-
wave stiffness at 0 K, D0, and the Curie temperature, TC (zero-field differential susceptibility
at 0 K, χ0). In sharp contrast with the abrupt variations in the physical quantities caused by
site disorder, N(EF) (and hence the inverse Stoner enhancement factor S−1 = I N(EF) − 1),
M0, D0, TC and even the D0/TC ratio (χ0) decrease (increase) smoothly with increasing
compositional disorder brought about by lowering the Ni concentration (p) towards the critical
value (pc) at which the long-range ferromagnetic order disappears. The functional dependences
of M0, D0 and TC on p are very well described by the power laws M0(p) ∼ (p− pc)

βp , D0(p) ∼
(p − pc)

θp and TC(p) ∼ (p − pc)
φ with p > pc, which, according to the percolation theories,

characterize the percolation critical behaviour (second-order phase transition) at p = pc in
three-dimensional (d = 3) ferromagnetic percolating networks. The other important finding
is that a crossover in the spin dynamics from the hydrodynamic (magnon) to critical (fracton)
regime occurs at a well-defined temperature T∗

co(p). The present results, in addition: (i) permit a
reasonably accurate determination of the hydrodynamic-to-critical spin-wave crossover line in
the magnetic phase diagram, the percolation-to-thermalcrossover exponent, fractal dimension,
fracton dimensionality, the percolation critical exponents for spontaneous magnetization, spin-
wave stiffness, correlation length and conductivity; and (ii) vindicate the Alexander–Orbach
conjecture and the Golden inequality for d = 3 percolating ferromagnetic networks.
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